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The Qp
Weak Experiment:         (Jefferson Lab, E02-020) 

A precision search for new physics beyond the Standard Model
via parity-violating e-p scattering at low Q2

Electroweak radiative corrections 
→ sin2θW varies with Q

+   •••+

???

http://www.jlab.org/qweak/
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The Qweak Collaboration:

18 institutions, 63 collaborators & growing....
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Proton Weak Charge Tutorial (part I) :

• Weak proton form factors:   GZ
E(Q2) and GZ

M(Q2) describe  the 
electric and magnetic response as probed by the Z boson    

• The Q2 → 0 limit of   GZ
E is the proton’s weak charge, which we will 

measure at JLab: 
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“Running of sin2θW” in the Standard Model

All “extracted” values of sin2θW must
agree with the Standard Model 
prediction or new physics is indicated. 

Qp
weak and SLAC E158 (pure leptonic)

have different  sensitivities to 
proposed Standard Model extensions. 

Electroweak radiative corrections 
→ sin2θW varies with Q

+   •••+

Erler & Ramsey-Musolf

(2001)

(2002)

Erler et al., Phys. Rev D 68, 016006

E158 run 
I-II (2003)

(proposal error bars)
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Theory “phase space” for Leptoquark 
extensions has increased since the 
Qweak proposal was approved !!

Sensitivity of proton and electron weak charge measurements:

Comparison of anticipated errors for Qweak and E158 weak charge measurements
with deviations from the Standard Model expected from various extensions and allowed
(95% CL) from fits to existing data – Erler & Ramsey-Musolf.

proton
Qweak
(Jlab)

electron
Qweak
(SLAC)

(proposal error bars shown)
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Proton Weak Charge Tutorial:  Part II

MEM MNC

Interference gives
helicity asymmetry, A,
for polarized beam
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Aha!   A measurement of the helicity
asymmetry at low Q2, plus knowledge of 
the hadronic form factor contribution
B(Q2), allows the proton weak charge to 
be determined:      Qweak = 1 – 4 sin2θw.         
δQw= 4% Æ δsin2 θw = 0.3% !!!
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Impact via “Model-independent Semi-Leptonic Analysis”

Effective electron-quark neutral
current Lagrangian:

Large ellipse (existing data):
SLAC e-D  (DIS)
MIT-Bates 12C  (elastic)
Cesium atomic parity violation

Red ellipse:
Impact of Qp

Weak measurement
(centroid assumes agreement
with the Standard Model)  

∆C1u ≡ C1u(exp) − C1u(SM)
∆C1d ≡ C1d(exp) − C1d(SM)   

Le-q
PV = −

GF

2
e γ µγ 5e C1qq γ µq

q
∑

               →  A(e)    x    V(q)

Erler, Ramsey-Musolf et al.
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Requirements:

1.  small Q2 (0.03 GeV2)   (low beam energy, small angle)

2.  knowledge of hadronic form factors B(Q2) (other expts.)

3.  large solid angle, integrating detector system for high sensitivity  (A ~ 10-7)

4. highly quality polarized beam and polarimetry (measured asymmetry is PA)

5.  measurement of detector-weighted <Q2>  and <Q4>  
(hybrid pulsed/integrating setup with tracking calibration)

....  etc !!!
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Experimental Apparatus (schematic):

1.165 GeV, P = 0.8 

Tracking system to
calibrate <Q2>, <Q4>

oθ = 8 ± 2
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Qweak Experiment Parameters

Incident beam energy:   1.165 GeV
Beam Current:                180 µA
Beam Polarization:          ~80%
LH2 target power:          2.2 KW

Central scattering angle:             8°
Scattering angle acceptance:      ±2°
Phi Acceptance:                             67% of 2π
Solid angle:                                     46 msr
Average Q2:                                    0.03 GeV2

Integrated Rate (all sectors):         5.6 GHz  
Integrated Rate (per detector):      0.7 GHz
Acceptance averaged asymmetry:    –0.3 ppm
Statistical error per pulse pair:       5 x 10-5

Running Time: Run I   23 days
Run II  93 days
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Error Budget:   Total:    ∆Qp
weak/Qp

weak =   4 %

 ∆Qp
weak/Qp

weak        
Statistical (2200 hours)                                     2.8%
Systematic:

Hadronic structure corrections B(Q2) 2.0%
Beam polarization                                         1.4%
Average Q2 determination 1.0%  
Helicity-correlated Beam Properties            0.6%
Uncertainty in Inelastic contamination 0.2%
Al Target window Background                      <1.0%    

Total systematic                                                2.9%
Total                                              4.0%

---- Range of possible strange quark
form factor contribution

e.g. hadronic form
factor extrapolation
B(Q2) from other 
experiments:

2.0%w

w

Q
Q

∆
= ±

0.03 (GeV/c)2

 ∆Qp
weak/Qp

weak        “Possible Improvements”

Statistical (2200 hours)                                     2.8%      Æ 2.5%
Systematic:

Hadronic structure corrections B(Q2) 2.0%      Æ 1.5%
Beam polarization                                         1.4%      Æ 1.0%
Average Q2 determination 1.0%  
Helicity-correlated Beam Properties            0.6%
Uncertainty in Inelastic contamination 0.2%
Al Target window Background                      <1.0%    Æ 0.3% (Be)

Total systematic                                                2.9%      Æ 2.2 %
Total                                              4.0% Æ 3.3%
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Precision Polarimetry (require ± 1% )

θ

Q2

D2

Q1

D3

D1
D=0.52 m

1 m2  m 1.5 m

9.5 m

Electron detector

D4

Photon
Detector

→ A Compton Polarimeter for hall C is being developed for high current measurements

Existing ~ 1% Hall C Möller polarimeter --
a superconducting solenoid drives the 
“pure iron” target foil into saturation.   The 
maximum operating current is IMax = 2 to 
10 µA , so the beam current must be 
reduced (and the beam retuned) to 
operate this polarimeter in its present 
configuration.  Several upgrade ideas are 
on the table to allow effective operation at 
higher currents by rapid sampling.
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Instrumentation details:  magnet

Require: 
• symmetric, open geometry with large acceptance
• clean separation of elastic & inelastic events
• should  be easy to build and maintain

Solution:
• normal conducting, water-cooled toroidal

spectrometer, based on the BLAST design

∂Bφ/∂r gives required 
focussing of elastic e-

Bφ

( )R cm

( )kG
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Beam’s Eye View with GEANT Simulated Events

Black region in center 
is Pb shielding
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Issue:  shape of elastic “moustache” on the detector bars

• magnet focuses in θ, defocuses in φ

• “moustache” ends affect sensitivity to beam motion

• collimator design is critical
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CAD Illustration of Qp
Weak Collimator System

Beam

First Collimator
(defining aperture) 

Second Collimator
(clean up)

QTOR Magnet

Shielding
(mostly existing)

Target System
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Estimate of the Inelastic & Photon Background 

At Detector:   Elastic e-p rate = 763 MHz / octant
(with Cerenkov cut) Inelastic rate = 35 KHz

→ Inelastic contamination ~ 0.005%

Photon rate ~ 50 KHz         → Photon contamination ~ 0.007%

N - ∆ asymmetry A ∝ 4 sin2θW ~ 4 x 10-6  (factor of 10 more than e-p elastic)
so the contribution of inelastic asymmetry to the elastic asymmetry ~ 0.1%

→ We will also directly measure this asymmetry by running with magnet 
adjusted to put inelastic events on focal plane detector 

GEANT simulation with 
double collimator.

Inelastics Elastic

Photons
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The Qp
weak Detector and Electronics System 

Focal plane detector requirements:

• Insensitivity to background γ, n, π.
• Radiation hardness (expect > 300 kRad).
• Operation at counting statistics.

→ Fused Silica (synthetic quartz) Cerenkov detector.

• Plan to use 12 cm x 200 cm x 2.5 cm quartz bars
read out at both ends by S20 photocathode PMTs
(expect ~ 100 pe/event)

Electronics (TRIUMF/Manitoba/LANL):

• Normal mode:  integration
• Will have option for pulse mode.
• Low electronic noise contribution.

compared to counting statistics.
• 1 MHz 16 bit ADC will allow for   
over sampling.

 

     Op Amp 

1 MΩ  2 pF 

Fiber 
Optic  

Converter 
 

±15 V 

1 MHz 
16 bit  
ADC 

110 VAC in Pulse
mode in

10 kΩ 

PMT 
HV in 

PMT
anode 
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Measurement of the Signal-to-Background Dilution Factor 

Hybrid TOF Measurement:
• Beam: 2 MHz (instead of 499), low current
• PMT anode → 1 GHz 8 bit transient digitizer

TOF distribution of the anode current
→ events of interest are in the prompt peak  

Decompose Prompt Peak:
• Insert GEMs, drift chambers & scintillator.
• Run at low beam current (“pulse mode”) in coincidence.

• Scintillator allows for neutral rejection.
• Tracking traces origin of scattered particles.  

PMT Anode →
1 GHz 8 bit transient digitizer

Pions Neutrons

Prompt:
Elastic e-

+ π0 → γγ
+ brems. γ

This is an integrating experiment, but we have to
know how much light comes from elastic electrons!
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Determination of Average Q2

Need to know ∆<Q2>/<Q2> ~ 0.7%

 → requires survey accuracy ~ 1 mrad
(~ 1 mm for alignment of precision collimator 
with respect to target)

Expected Q2 distribution

Auxiliary measurements (at low beam current) 
will be made with 1 set of GEMs and 2 pairs 
of Drift Chambers to:

• Measure shape of focal plane distribution.
• Measure position-dependent detector efficiency.
• Compared measured Q2 distribution 

to Monte-Carlo 
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The Qp
weak Liquid Hydrogen Target 

Qp
Weak Target parameters/requirements:

• Length = 35 cm
• Beam current = 180 µA
• Beam power = 2200 W 
• Raster size ~4 mm x ~4 mm square
• Flow velocity > 700 cm/s
• Density fluctuations (at 15 Hz) < 5x10-5

Target:
• Similar in design to SAMPLE and G0 targets

→ longitudinal liquid flow
→ high stream velocity achieved with

perforated, tapered “windsock”

G0 target
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The Qp
weak Luminosity Monitor 

Luminosity monitor → Symmetric array of 8 Cerenkov detectors (quartz) 
instrument with vacuum photo diodes & integrating readout 
at small scattering angle θ ~ 0.8° (low Q2, high rates ~28 GHz/octant)

Expected signal components: 52% e-e Moller, 42% e-p elastic, 5% e-27Al elastic. 
Expected lumi monitor asymmetry << main detector asymmetry.
Expected lumi monitor statistical error ~ (1/6) main detector statistical error.

Useful for: 

• Sensitive check on helicity-correlated beam parameter corrections procedure.
• Regress out target density fluctuations.

MAMI A4
“LUMO”
Monitor
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Summary and Outlook

Go for it!

• Qweak will provide a precision electroweak Standard Model test at low Q2

• The sensitivity of our experiment to various Standard Model extensions 
complements that of existing or planned measurements in other systems.

• Capital funding is in place thanks to JLab/DOE, NSF, NSERC and university 
matching funds 

• Magnet procurements placed in FY04 Æ installation in Hall C by 2007

• Since approval of the experiment, the scientific case has only gotten stronger;      
uncertainties in radiative corrections have been reduced by better calculations, and 
the allowed range for Leptoquark searches has increased somewhat (MJRM et al.) !

Thank you for inviting
me to the sub Z workshop!

☺
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Can we do better than a 4% Qweak Measurement?

Statistical errors only

All Uncertainties

Æ Must reduce systematic errors in polarization and hadronic background terms.
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Position dependence of the # of 
photoelectrons on each of the phototubes.  

Simulation includes the full weighted cross-
section and optics of the spectrometer.

Uniformity of light collection in the Cerenkov bars:

12.5o Rotated Detector

Length Width


